Applications Of Derivatives Question 333

Question: The function $ f(x)=ax+\frac{b}{x};a,,b,x>0 $ takes on the least value at x equal to

[AMU 2000]

Options:

A) b

B) $ \sqrt{a} $

C) $ \sqrt{b} $

D) $ \sqrt{b/a} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=ax+\frac{b}{x} $

therefore $ {f}’(x)=a-\frac{b}{x^{2}} $

therefore $ {f}’(x)=0\Rightarrow x=\sqrt{\frac{b}{a}} $ Now $ {f}’’(x)=\frac{2b}{x^{3}} $

therefore At $ x=\sqrt{\frac{b}{a}}, $

$ {f}’’(x)=+ve $ $ f(x) $ has the least value at $ x=\sqrt{\frac{b}{a}} $ .