Applications Of Derivatives Question 337

Question: If $ a^{2}x^{4}+b^{2}y^{4}=c^{6}, $ then maximum value of xy is

[RPET 2001]

Options:

A) $ \frac{c^{2}}{\sqrt{ab}} $

B) $ \frac{c^{3}}{ab} $

C) $ \frac{c^{3}}{\sqrt{2ab}} $

D) $ \frac{c^{3}}{2ab} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ a^{2}x^{4}+b^{2}y^{4}=c^{6} $

therefore $ y={{( \frac{c^{6}-a^{2}x^{4}}{b^{2}} )}^{1/4}} $

Hence $ f(x)=xy=x{{( \frac{c^{6}-a^{2}x^{4}}{b^{2}} )}^{1/4}} $

therefore $ f(x)={{( \frac{c^{6}x^{4}-a^{2}x^{8}}{b^{2}} )}^{1/4}} $

Differentiate $ f(x) $ with respect to x, then $ {f}’(x)=\frac{1}{4}{{( \frac{c^{6}x^{4}-a^{2}x^{8}}{b^{2}} )}^{-3/4}}( \frac{4x^{3}c^{6}}{b^{2}}-\frac{8x^{7}a^{2}}{b^{2}} ) $ Put $ {f}’(x)=0 $ , $ \frac{4x^{3}c^{6}}{b^{2}}-\frac{8x^{7}a^{2}}{b^{2}}=0 $

therefore $ x^{4}=\frac{c^{6}}{2a^{2}} $

therefore $ x=\pm \frac{{c^{3/2}}}{{2^{1/4}}\sqrt{a}} $

At $ x=\frac{{c^{3/2}}}{{2^{1/4}}\sqrt{a}} $ the $ f(x) $ will be maximum, so

$ f( \frac{{c^{3/2}}}{{2^{1/4}}\sqrt{a}} ),=,{{( \frac{c^{12}}{2a^{2}b^{2}}-\frac{c^{12}}{4a^{2}b^{2}} )}^{1/4}}={{( \frac{c^{12}}{4a^{2}b^{2}} )}^{1/4}}=\frac{c^{3}}{\sqrt{2ab}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें