Applications Of Derivatives Question 338

Question: The function $ f(x)=2x^{3}-15x^{2}+36x+4 $ is maximum at

[Karnataka CET 2001]

Options:

A) $ x=2 $

B) $ x=4 $

C) $ x=0 $

D) $ x=3 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=2x^{3}-15x^{2}+36x+4 $

therefore $ {f}’(x)=6x^{2}-30x+36 $ …………..(i) We know that for its maximum value $ {f}’(x)=0. $

$ 6x^{2}-30x+36=0 $

therefore $ (x-2)(x-3)=0 $

therefore $ x=2,,3. $

Again differentiating equation (i), we get $ {f}’’(x)=12x-30 $

therefore $ {f}’’(2)=24-30=-6<0 $ . Therefore $ f(x) $ is maximum at $ x=2. $