Applications Of Derivatives Question 339

Question: Maximum slope of the curve $ y=-x^{3}+3x^{2}+9x-27 $ is

[MP PET 2001]

Options:

A) 0

B) 12

C) 16

D) 32

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=f(x)=-x^{3}+3x^{2}+9x-27 $

The slope of this curve $ {f}’(x)=-3x^{2}+6x+9 $

Let $ g(x)={f}’(x)=-3x^{2}+6x+9 $

Differentiate with respect to x, $ {g}’(x)=-6x+6 $

Put $ {g}’(x)=0 $

therefore $ x=1 $ Now, $ {g}’’(x)=-6<0 $ and

Hence at $ x=1, $

$ g(x) $ (slope) will have maximum value. $ {{[g(1)]} _{max\text{.}}}=-3\times 1+6+9=12 $ .