Applications Of Derivatives Question 341

Question: If $ f(x)=\frac{1}{4x^{2}+2x+1} $ , then its maximum value is

[RPET 2002]

Options:

A) 4/3

B) 2/3

C) 1

D) ¾

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=\frac{1}{4x^{2}+2x+1} $

therefore $ {f}’(x)=\frac{-(8x+2)}{{{(4x^{2}+2x+1)}^{2}}} $ Put $ {f}’(x)=0 $

therefore $ 8x+2=0 $

therefore $ x=-1/4 $ . $ {f}’’,(x)=\frac{-[{{(4x^{2}+2x+1)}^{2}}8-(8x+2),2,(4x^{2}+2x+1)(8x+2)]}{{{(4x^{2}+2x+1)}^{4}}} $

$ {f}’’(-1/4)=-ve $ (point of maxima) $ f{{(-1/4)} _{max\text{.}}} $ = $ \frac{1}{4\times \frac{1}{16}-2\times \frac{1}{4}+1}=\frac{4}{3} $ .