Applications Of Derivatives Question 345

Question: If $ f(x)=2x^{3}-3x^{2}-12x+5 $ and $ x\in [-2,,4] $ , then the maximum value of function is at the following value of x

[MP PET 1987, 2000; Orissa JEE 2005]

Options:

A) 2

B) -1

C) - 2

D) 4

Show Answer

Answer:

Correct Answer: D

Solution:

$ f’(x)=6x^{2}-6x-12 $

$ f’(x)=0\Rightarrow (x-2)(x+1)=0\Rightarrow x=-1,,2 $ Here $ f(4)=128-48-48+5=37 $

$ f(-1)=-2-3+12+5=12 $

$ f(2)=16-12-24+5=-15 $

$ f(-2)=-16-12+24+5=1 $

Therefore the maximum value of function is 37 at $ x=4 $ .