Applications Of Derivatives Question 346

Question: Function $ f(x)=x^{4}-\frac{x^{3}}{3} $ is

Options:

A) Increasing for $ x>,\frac{1}{4} $ and decreasing for $ x<\frac{1}{4} $

B) Increasing for every value of x

C) Decreasing for every value of x

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=x^{4}-\frac{x^{3}}{3}\Rightarrow f’(x)=4x^{3}-x^{2} $

For increasing $ 4x^{3}-x^{2}>0=x^{2}(4x-1)>0 $

Therefore, the function is increasing for $ x>\frac{1}{4} $

Similarly decreasing for $ x<\frac{1}{4} $ .