Applications Of Derivatives Question 347

Question: The perimeter of a sector is p. The area of the sector is maximum when its radius is

[Karnataka CET 2002]

Options:

A) $ \sqrt{p} $

B) $ \frac{1}{\sqrt{p}} $

C) $ \frac{p}{2} $

D) $ \frac{p}{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

Perimeter of a sector = p. Let AOB be the sector with radius r. If angle of the sector be q radians, then area of sector $ (A)=\frac{1}{2}r^{2}\theta $ …………..(i)

Length of arc(s) = rq or $ \theta =\frac{s}{r} $ . Therefore perimeter of the sector $ =(p)=r+s+r=2r+s $ …………..(ii)

Substituting $ \theta =\frac{s}{r} $ in (i), A = $ ( \frac{1}{2}r^{2} ),( \frac{s}{r} )=\frac{1}{2}rs $

therefore $ s=\frac{2A}{r} $ .

Now substituting the value of s in (ii), we get $ p=2r+( \frac{2A}{r} ) $ or $ 2A=pr-2r^{2}. $

Differentiating with respect to $ r,, $ we get $ 2\frac{dA}{dr}=p-4r $ . We know that for the maximum value of area $ \frac{dA}{dr}=0 $ or $ p-4r=0 $ or $ r=\frac{p}{4} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें