Applications Of Derivatives Question 348

Question: v If $ y=a\log x+bx^{2}+x $ has its extremum value at $ x=1 $ and $ x=2, $ then $ (a,b) $ =

[UPSEAT 2002]

Options:

A) $ ( 1,\frac{1}{2} ) $

B) $ ( \frac{1}{2},,2 ) $

C) $ ( 2,\frac{-1}{2} ) $

D) $ ( \frac{-2}{3},\frac{-1}{6} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{dy}{dx}=\frac{a}{x}+2bx+1 $

therefore $ {{( \frac{dy}{dx} )} _{x=1}}=a+2b+1=0 $

therefore $ a=-2b-1 $ and $ {{( \frac{dy}{dx} )} _{x=2}}=\frac{a}{2}+4b+1=0 $

therefore $ \frac{-2b-1}{2}+4b+1=0 $

therefore $ -b+4b+\frac{1}{2}=0 $

therefore $ 3b=\frac{-1}{2} $

therefore $ b=\frac{-1}{6} $ and $ a=\frac{1}{3}-1=\frac{-2}{3} $ .