Applications Of Derivatives Question 349

Question: In $ (-4,,4) $ the function $ f(x)=\int\limits_{-10}^{x}{(t^{4}-4){e^{-4t}}dt} $ has

[AMU 2002]

Options:

A) No extrema

B) One extremum

C) Two extrema

D) Four extrema

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=\int_{-10}^{x}{(t^{4}-4){e^{-4t}}dt} $

therefore $ {f}’(x)=(x^{4}-4){e^{-4x}} $

Now $ {f}’(x)=0\Rightarrow x=\pm \sqrt{2},,\pm \sqrt{2} $

Now $ {f}’’(x)=-,4(x^{4}-4){e^{-4x}}+4x^{3}{e^{-4x}} $

At $ x=\sqrt{2} $ and $ x=-\sqrt{2} $ the given function has extreme value.