Applications Of Derivatives Question 35

Question: Maximum value of $ {{( \frac{1}{x} )}^{x}} $ is

[DCE 1999; Karnataka CET 1999; UPSEAT 2003]

Options:

A) $ {{(e)}^{e}} $

B) $ {{(e)}^{e}} $

C) $ {{(e)}^{-e}} $

D) $ {{( \frac{1}{e} )}^{e}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)={{( \frac{1}{x} )}^{x}} $

therefore $ f’(x)={{( \frac{1}{x} )}^{x}}( \log \frac{1}{x}-1 ) $

$ f’(x)=0\Rightarrow \log \frac{1}{x}=1=\log e\Rightarrow \frac{1}{x}=e\Rightarrow x=\frac{1}{e} $ Therefore maximum value of function is $ {e^{1/e}} $ .