Applications Of Derivatives Question 351

Question: The function $ f(x)={x^{-x}},,(x,\in ,R) $ attains a maximum value at x =

[EAMCET 2002]

Options:

A) 2

B) 3

C) 1/e

D) 1

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=y={x^{-x}} $

therefore $ \log y=-,x\log x $ Differentiating w.r.t. x, $ \frac{1}{y}.\frac{dy}{dx}=-[ x.\frac{1}{x}+\log x ] $

therefore $ \frac{1}{y}.\frac{dy}{dx}=-[1+\log x] $

therefore $ \frac{dy}{dx}=-{x^{-x}}[1+\log x] $

therefore $ \frac{dy}{dx}={x^{-x}}[ \log \frac{1}{x}-1 ] $ Put $ \frac{dy}{dx}=0 $

therefore $ {\log_{e}}\frac{1}{x}={\log_{e}}e $

therefore $ \frac{1}{x}=e\Rightarrow x=\frac{1}{e} $ .