Applications Of Derivatives Question 352

Question: If $ ab=2a+3b,,a>0,b>0 $ then the minimum value of ab is

[Orissa JEE 2002]

Options:

A) 12

B) 24

C) $ \frac{1}{4} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ ab=2a+3b $

therefore $ (a-3)b=2a $

therefore $ b=\frac{2a}{a-3} $ N

Now $ z=ab=\frac{2a^{2}}{a-3} $

therefore $ \frac{dz}{da}=\frac{2[(a-3)2a-a^{2}]}{{{(a-3)}^{2}}}=\frac{2[a^{2}-6a]}{{{(a-3)}^{2}}} $

Put $ \frac{dz}{da}=0 $ , \ $ a^{2}-6a=0 $ , $ a=0,,6 $ Now at $ a=6, $

$ \frac{d^{2}z}{da^{2}}=+ve $

When $ a=6,b=4 $ ; \ (ab)min. = 6 × 4 = 24.