Applications Of Derivatives Question 355

Question: The minimum value of $ ( x^{2}+\frac{250}{x} ) $ is

[Kurukshetra CEE 2002]

Options:

A) 75

B) 50

C) 25

D) 55

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y=f(x)=( x^{2}+\frac{250}{x} ) $ , $ \frac{dy}{dx}={f}’(x)=2x-\frac{250}{x^{2}} $

Put $ {f}’(x)=0 $

therefore $ 2x^{3}-250=0 $

therefore $ x^{3}=125 $

therefore $ x=5 $

Again, $ \frac{d^{2}y}{dx^{2}}={f}’’(x)=2+\frac{500}{x^{3}} $ .Now $ {f}’’(5)=2+\frac{500}{125}>0 $

Hence at $ x=5 $ . The function will be minimum. Minimum value $ f(5)=25+50=75 $ .