Applications Of Derivatives Question 360

Question: The minimum value of $ x^{2}+\frac{1}{1+x^{2}} $ is at

[UPSEAT 2003]

Options:

A) $ x=0 $

B) $ x=1 $

C) $ x=4 $

D) $ x=3 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=x^{2}+\frac{1}{1+x^{2}} $ , $ {f}’(x)=2x-\frac{1}{{{(1+x^{2})}^{2}}},.,2x $

Now $ {f}’(x)=0 $

therefore $ x=0 $ So the function has minimum value at $ x=0 $ .