Applications Of Derivatives Question 362

Question: The minimum value of $ 2x+3y, $ when $ xy=6, $ is

[MP PET 2003]

Options:

A) 12

B) 9

C) 8

D) 6

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=2x+3y $ when $ xy=6 $

$ f(x)=2x+3y=2x+\frac{18}{x} $

$ {f}’(x)=2-\frac{18}{x^{2}}=0 $

therefore $ x=\pm 3 $ and $ {f}’’(x)=\frac{36}{x^{3}}\Rightarrow {f}’’(3)>0 $

Putting $ x=+3 $ , we get the minimum value to be 12.