Applications Of Derivatives Question 364

Question: The minimum value of function $ f(x)=3x^{4}-8x^{3}+12x^{2}-48x+25 $ on

[0, 3] is equal to [Pb. CET 2004]

Options:

A) 25

B) - 39

C) - 25

D) 39

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=3x^{4}-8x^{3}+12x^{2}-48x+25 $ $ f’(x)=12x^{3}-24x^{2}+24x-48 $

$ =12[x^{3}-2x^{2}+2x-4] $

$ =12[(x-2)(x^{2}+2)] $

For maximum and minimum value of the function $ f’(x)=0 $

therefore $ x=2 $ . Now $ {f}’’(x)=12[3x^{2}-4x+2] $ $ {f}’’(2)=12,[12-8+2]=72>0 $

Hence the function is minimum at $ x=2 $

Minimum value of $ f(x) $ on [0, 3] $ =\min { f(0),,f(2),,f(3) } $

$ =\min { 25,,-39,,16 } $

$ =-39 $ .