Applications Of Derivatives Question 364

Question: The minimum value of function $ f(x)=3x^{4}-8x^{3}+12x^{2}-48x+25 $ on

[0, 3] is equal to [Pb. CET 2004]

Options:

A) 25

B) - 39

C) - 25

D) 39

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=3x^{4}-8x^{3}+12x^{2}-48x+25 $ $ f’(x)=12x^{3}-24x^{2}+24x-48 $

$ =12[x^{3}-2x^{2}+2x-4] $

$ =12[(x-2)(x^{2}+2)] $

For maximum and minimum value of the function $ f’(x)=0 $

therefore $ x=2 $ . Now $ {f}’’(x)=12[3x^{2}-4x+2] $ $ {f}’’(2)=12,[12-8+2]=72>0 $

Hence the function is minimum at $ x=2 $

Minimum value of $ f(x) $ on [0, 3] $ =\min { f(0),,f(2),,f(3) } $

$ =\min { 25,,-39,,16 } $

$ =-39 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें