Applications Of Derivatives Question 365

Question: The maximum value of $ {x^{1/x}} $ is

[MP PET 2004]

Options:

A) $ \frac{1}{e} $

B) $ {e^{1/e}} $

C) e

D) $ \frac{1}{e^{e}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y={x^{1/x}} $ , Taking log , we have $ \log y=\frac{1}{x}\log x $

Differentiate both sides w.r.t. x $ \frac{1}{y}\frac{dy}{dx}=\frac{1}{x^{2}}-\frac{\log x}{x^{2}} $

therefore $ \frac{dy}{dx}=\frac{1}{x^{2}}(1-\log x){x^{1/x}} $

For maximum, $ \frac{dy}{dx}=0 $

therefore $ x=e $ ; \ $ {y_{\max }}={e^{1/e}} $ .