Applications Of Derivatives Question 366

Question: The minimum value of $ 4e^{2x}+9{e^{-2x}} $ is

[J & K 2005]

Options:

A) 11

B) 12

C) 10

D) 14

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ f(x)=4e^{2x}+9{e^{-2x}} $

$ \therefore $ $ {f}’(x)=8e^{2x}-18{e^{-2x}} $ Put $ {f}’(x)=0\Rightarrow 8e^{2x}-18{e^{-2x}}=0 $

$ e^{2x}=3/2\Rightarrow x=\log {{(3/2)}^{1/2}} $

Again $ {f}’’(x)=16e^{2x}+36{e^{-2x}}>0 $

Now $ f(\log {{(3/2)}^{1/2}})=4{e^{2.(\log {{(3/2)}^{1/2}})}}+9{e^{-2(\log {{(3/2)}^{1/2}})}} $ = $ 4\times \frac{3}{2}+9\times \frac{2}{3} $ = $ 6+6=12 $

Hence minimum value = 12.



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index