Applications Of Derivatives Question 367

Question: The point $ (0,,5) $ is closest to the curve $ x^{2}=2y $ at

[MNR 1983]

Options:

A) $ (2\sqrt{2},0) $

B) (0, 0)

C) $ (2,,2) $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

Let a point on the curve by (h, k)

Then $ h^{2}=2k $ …………..(i)

Distance = D = $ \sqrt{h^{2}+{{(k-5)}^{2}}} $ By (i); $ D=\sqrt{2k+{{(k-5)}^{2}}} $

$ \frac{dD}{dk}=\frac{1}{2\sqrt{2k+{{(k-5)}^{2}}}}\times 2(k-5)+2=0 $

$ x\in (-1,\infty ) $

So, at $ k=4 $ function D must be minimum.
Then point will be $ (\pm ,2\sqrt{2},,4) $ .