Applications Of Derivatives Question 372

Question: Radius of a circle is increasing uniformly at the rate of $ 3cm/\sec . $ The rate of increasing of area when radius is $ 10cm $ , will be

Options:

A) $ \pi ,cm^{2}/s $

B) $ 2\pi ,cm^{2}/s $

C) $ 10\pi ,cm^{2}/s $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{dr}{dt}=3 $ , we have $ S=\pi r^{2}\Rightarrow \frac{dS}{dt}=2\pi r\frac{dr}{dt} $

therefore $ {{( \frac{dS}{dt} )} _{r=10}}=2.\pi \times 10\times 3=60,\pi ,cm^{2}/sec. $