Applications Of Derivatives Question 384

Question: Rolle’s theorem is not applicable to the function $ f(x)=|x| $ defined on

[-1, 1] because [AISSE 1986; MP PET 1994, 95]

Options:

A) f is not continuous on [ -1, 1]

B) f is not differentiable on (-1,1)

C) $ f(-1)\ne f(1) $

D) $ f(-1)=f(1)\ne 0 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)= \begin{cases} & -x,,\text{when –1}\le x<0 \\ & \text{ }x,\ when\ 0\le x\le 1 \\ \end{cases} . $

Clearly $ f(-1)=|-1|=1=f(1) $

But $ Rf’(0)=\underset{h\to 0}{\mathop{\lim }},\frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }},\frac{|h|}{h} $

$ =\underset{h\to 0}{\mathop{\lim }},\frac{h}{h}=1 $

$ Lf’(0)=\underset{h\to 0}{\mathop{\lim }},\frac{f(0-h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }},\frac{|-h|}{-h} $

$ =\underset{h\to 0}{\mathop{\lim }},\frac{h}{-h}=-1 $

$ \therefore Rf’(0)\ne Lf’(0) $

Hence it is not differentiable on $ (-1,1) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें