Applications Of Derivatives Question 388

Question: The function $ f(x)=x(x+3){e^{-(1/2)x}} $ satisfies all the conditions of Rolle’s theorem in [-3, 0]. The value of c is

Options:

A) 0

B) -1

C) - 2

D) - 3

Show Answer

Answer:

Correct Answer: C

Solution:

To determine ‘c’ in Rolle’s theorem, $ f’(c)=0 $ .

Here $ f’(x)=(x^{2}+3x){e^{-(1/2)x}}.( -\frac{1}{2} )+(2x+3){e^{-(1/2)x}} $

$ ={e^{-(1/2)x}}{ -\frac{1}{2}(x^{2}+3x)+2x+3 } $

$ =-\frac{1}{2}{e^{-(x/2)}}{x^{2}-x-6} $

$ \therefore f’(c)=0\Rightarrow c^{2}-c-6=0\Rightarrow c=3,,-2, $ But $ c=3\notin [-3,,0]. $