Applications Of Derivatives Question 402

Question: If the function $ f(x)=x^{3}-6x^{2}+ax+b $ satisfies Rolle-s theorem in the interval $ [1,,3] $ and $ f’( \frac{2\sqrt{3}+1}{\sqrt{3}} )=0 $ , then

[MP PET 2002]

Options:

A) $ a=-11 $

B) $ a=-6 $

C) $ a=6 $

D) $ a=11 $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=x^{3}-6x^{2}+ax+b $

therefore $ {f}’(x)=3x^{2}-12x+a $

therefore $ {f}’(c)=0 $

therefore $ {f}’( 2+\frac{1}{\sqrt{3}} )=0 $

therefore $ 3{{( 2+\frac{1}{\sqrt{3}} )}^{2}}-12( 2+\frac{1}{\sqrt{3}} )+a=0 $

therefore $ 3( 4+\frac{1}{3}+\frac{4}{\sqrt{3}} )-12( 2+\frac{1}{\sqrt{3}} )+a=0 $

$ 12+1+4\sqrt{3}-24-4\sqrt{3}+a=0 $

therefore $ a=11 $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index