Applications Of Derivatives Question 404

Question: In the Mean-Value theorem $ \frac{f(b)-f(a)}{b-a}=f’(c), $ if $ a=0,b=\frac{1}{2} $ and $ f(x)=x(x-1)(x-2), $ the value of c is

[MP PET 2003]

Options:

A) $ 1-\frac{\sqrt{15}}{6} $

B) $ 1+\sqrt{15} $

C) $ 1-\frac{\sqrt{21}}{6} $

D) $ 1+\sqrt{21} $

Show Answer

Answer:

Correct Answer: C

Solution:

From mean value theorem $ {f}’(c)=\frac{f(b)-f(a)}{b-a} $

$ a=0,,f(a)=0 $

therefore $ b=\frac{1}{2},,f(b)=\frac{3}{8} $

$ {f}’(x)=(x-1)(x-2)+x(x-2)+x(x-1) $

$ {f}’(c)=(c-1)(c-2)+c(c-2)+c(c-1) $ = $ c^{2}-3c+2+c^{2}-2c+c^{2}-c $

$ {f}’(c)=3c^{2}-6c+2 $

According to mean value theorem, $ {f}’(c)=\frac{f(b)-f(a)}{b-a} $

therefore $ 3c^{2}-6c+2=\frac{(3/8)-0}{(1/2)-0},=\frac{3}{4} $

therefore $ 3c^{2}-6c+\frac{5}{4}=0 $

$ c=\frac{6\pm \sqrt{36-15}}{2\times 3}=\frac{6\pm \sqrt{21}}{6} $

$ =1\pm \frac{\sqrt{21}}{6} $ .