Applications Of Derivatives Question 405

Question: The abscissa of the points of the curve $ y=x^{3} $ in the interval

[-2, 2], where the slope of the tangents can be obtained by mean value theorem for the interval [-2, 2], are [MP PET 1993]

Options:

A) $ \pm \frac{2}{\sqrt{3}} $

B) $ \pm \sqrt{3} $

C) $ \pm \frac{\sqrt{3}}{2} $

D) 0

Show Answer

Answer:

Correct Answer: A

Solution:

Given that equation of curve $ y=x^{3}=f(x) $

So $ f(2)=8 $ and $ f(-2)=-8 $

Now $ f’(x)=3x^{2}\Rightarrow f’(x)=\frac{f(2)-f(-2)}{2-(-2)} $

therefore $ \frac{8-(-8)}{4}=3x^{2};\therefore x=\pm \frac{2}{\sqrt{3}} $ .