Applications Of Derivatives Question 412

Question: The maximum area of a right angled triangle with hypotenuse h is:

Options:

A) $ \frac{h^{2}}{2\sqrt{2}} $

B) $ \frac{h^{2}}{2} $

C) $ \frac{h^{2}}{\sqrt{2}} $

D) $ \frac{h^{2}}{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Let base = b Altitude (or perpendicular) $ =\sqrt{h^{2}-b^{2}} $ Area, $ A=\frac{1}{2}\times base\times altitude $

$ =\frac{1}{2}\times b\times \sqrt{h^{2}-b^{2}} $

$ \Rightarrow \frac{dA}{db}=\frac{1}{2}[ \sqrt{h^{2}-b^{2}}+b.\frac{2b}{2\sqrt{h^{2}-b^{2}}} ] $

$ =\frac{1}{2}[ \frac{h^{2}-2b^{2}}{\sqrt{h^{2}-b^{2}}} ] $ Put $ \frac{dA}{db}=0,\Rightarrow b=\frac{h}{\sqrt{2}} $

Maximum area $ =\frac{1}{2}\times \frac{h}{\sqrt{2}}\times \sqrt{h^{2}-\frac{h^{2}}{2}}=\frac{h^{2}}{4} $