Applications Of Derivatives Question 415

Question: OR When x is positive, the minimum value of $ x^{x} $ is

[EAMCET 1987]

Options:

A) $ {e^{-1}} $

B) $ {e^{-1/e}} $

C) $ {e^{1/e}} $

D) $ e^{e} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ y=x^{x} $

therefore $ \log y=x.\log x,\ \ \ \ (x>0) $ Differentiating $ \frac{dy}{dx}=x^{x}(1+\log x) $ ;
$ \therefore \frac{dy}{dx}=0 $

therefore $ \log x=-1 $

therefore $ x={e^{-1}}=\frac{1}{e} $

$ \therefore $ Stationary point is $ x=\frac{1}{e} $

$ \frac{d^{2}y}{dx^{2}}=x^{x}{{(1+\log x)}^{2}}+x^{x}.\frac{1}{x} $ When $ x=\frac{1}{e},\ \ \frac{d^{2}y}{dx^{2}}={{( \frac{1}{e} )}^{(1/e)-1}}>0 $ Therefore y is minimum at $ x=\frac{1}{e} $ and minimum value $ ={{( \frac{1}{e} )}^{1/e}}={e^{-1/e}} $ .