Applications Of Derivatives Question 417

Question: The motion of a particle is described as $ s=2-3t+4t^{3} $ . What is the acceleration of the particle at the point where its velocity is zero-

Options:

A) 0

B) 4 unit

C) 8 unit

D) 12 unit

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given rule is: Distance, $ s=2-3t+4t^{3} $

$ \Rightarrow $ Velocity $ =\frac{ds}{dt}=-3+12t^{2} $

$ \Rightarrow $ Acceleration $ =\frac{d^{2}s}{dt^{2}}=16t $ Since, velocity is zero

$ \therefore \frac{ds}{dt}=0;,\Rightarrow 0=-3+12t^{2} $

$ \Rightarrow t=\frac{\sqrt{3}}{12}=\frac{1}{2}\Rightarrow \frac{d^{2}s}{dt^{2}}=16t $ Acceleration (when velocity is zero) $ =16\times \frac{1}{2}=8 $ unit.