Applications Of Derivatives Question 419

Question: The function $ f(x)=\frac{ln(\pi +x)}{ln(e+x)} $ is

[IIT 1995]

Options:

A) Increasing on $ [ 0,,\infty ) $

B) Decreasing on $ [ 0,,\infty ) $

C) Decreasing on $ [ 0,\frac{\pi }{e} ) $ and increasing on $ [ \frac{\pi }{e},\infty ) $

D) Increasing on $ [ 0,\frac{\pi }{e} ) $ and decreasing on $ [ \frac{\pi }{e},\infty ) $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ f(x)=\frac{\ln (\pi +x)}{\ln (e+x)} $

$ \therefore f’(x)=\frac{\ln (e+x)\times \frac{1}{\pi +x}-\ln (\pi +x)\frac{1}{e+x}}{{{\ln }^{2}}(e+x)} $

$ =\frac{(e+x)\ln (e+x)-(\pi +x)\ln (\pi +x)}{{{\ln }^{2}}(e+x)\times (e+x)(\pi +x)} $

$ \Rightarrow f’(x)<0 $ for all $ x\ge 0\ ,\ \ {\because \pi >e} $

Hence $ f(x) $ is decreasing in $ [0,\infty ) $ .