Applications Of Derivatives Question 419

Question: The function $ f(x)=\frac{ln(\pi +x)}{ln(e+x)} $ is

[IIT 1995]

Options:

A) Increasing on $ [ 0,,\infty ) $

B) Decreasing on $ [ 0,,\infty ) $

C) Decreasing on $ [ 0,\frac{\pi }{e} ) $ and increasing on $ [ \frac{\pi }{e},\infty ) $

D) Increasing on $ [ 0,\frac{\pi }{e} ) $ and decreasing on $ [ \frac{\pi }{e},\infty ) $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ f(x)=\frac{\ln (\pi +x)}{\ln (e+x)} $

$ \therefore f’(x)=\frac{\ln (e+x)\times \frac{1}{\pi +x}-\ln (\pi +x)\frac{1}{e+x}}{{{\ln }^{2}}(e+x)} $

$ =\frac{(e+x)\ln (e+x)-(\pi +x)\ln (\pi +x)}{{{\ln }^{2}}(e+x)\times (e+x)(\pi +x)} $

$ \Rightarrow f’(x)<0 $ for all $ x\ge 0\ ,\ \ {\because \pi >e} $

Hence $ f(x) $ is decreasing in $ [0,\infty ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें