Applications Of Derivatives Question 42

Question: How many tangents are parallel to x-axis for the curve $ y=x^{2}-4x+3 $ -

Options:

A) 1

B) 2

C) 3

D) No tangent is parallel to x-axis

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let $ y=x^{2}-4x+3 $ Differentiate both sides w.r.t. -x- $ \frac{dy}{dx}=2x-3 $ So, slope $ =2x-3 $ Since, tangent is $ \parallel $ to x = axis
$ \therefore $ slope = 0
$ \Rightarrow \frac{dy}{dx}=0\Rightarrow 2x-3=0\Rightarrow x=\frac{3}{2} $

$ \Rightarrow $ one tangent