Applications Of Derivatives Question 422

Question: A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Then the minimum length of the hypotenuse is

Options:

A) $ {{( {a^{\frac{3}{2}}}+{b^{\frac{3}{2}}} )}^{\frac{2}{3}}} $

B) $ {{( {a^{\frac{2}{3}}}+{b^{\frac{2}{3}}} )}^{\frac{3}{2}}} $

C) $ {{( {a^{\frac{2}{3}}}+{b^{\frac{2}{3}}} )}^{3}} $

D) $ {{( {a^{\frac{3}{2}}}+{b^{\frac{3}{2}}} )}^{3}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] From the figure, $ PC=b\cos ec\theta $ and $ AP=asec\theta $

$ AC=PC+AP $ or $ AC=b\cos ec\theta +a\sec \theta ….(1) $

$ \therefore \frac{d(AC)}{d\theta }=-b\cos ec\theta \cot \theta +a\sec \theta \tan \theta $ For minimum length, $ \frac{d(AC)}{d\theta }=0 $ or $ a\sec \theta \tan \theta =b\cos ec\theta \cot \theta $ or $ \tan \theta ={{( \frac{b}{a} )}^{1/3}} $

$ \therefore \sin \theta =\frac{{{(b)}^{1/3}}}{\sqrt{{a^{2/3}}+{b^{2/3}}}} $ and $ \cos \theta =\frac{{{(a)}^{1/3}}}{\sqrt{{a^{2/3}}+{b^{2/3}}}} $ Also, $ \theta \in (0,\pi /2) $

$ \underset{\theta \to 0}{\mathop{\lim }},(a,\sec \theta +b,\cos ec\theta )\to \infty $

and $ \underset{\theta \to \pi /2}{\mathop{\lim }},(a,\sec \theta +b,\cos ec\theta )\to \infty $

Therefore, $ \theta ={{\tan }^{-1}}{{( \frac{b}{a} )}^{1/3}} $ is a point of minima.

For this value of $ \theta $ , $ AC=\frac{b\sqrt{{a^{2/3}}+{b^{2/3}}}}{{b^{1/3}}}+\frac{a\sqrt{{a^{2/3}}+{b^{2/3}}}}{{a^{1/3}}} $

[Using (1) and (2)]

$ =\sqrt{{a^{2/3}}+{b^{2/3}}}({b^{2/3}}+{a^{2/3}})={{({a^{2/3}}+{b^{2/3}})}^{3/2}} $

Hence, the minimum length of the hypotenuse is $ {{({a^{2/3}}+{b^{2/3}})}^{3/2}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें