Applications Of Derivatives Question 425

Question: The curve $ y=xe^{x} $ has minimum value equal to

Options:

A) $ -\frac{1}{e} $

B) $ \frac{1}{e} $

C) $ -e $

D) e

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let $ y=xe^{x} $ . Differentiate both side w.r.t. -x………….
$ \Rightarrow \frac{dy}{dx}=e^{x}+xe^{x}=e^{x}(1+x) $ Put $ \frac{dy}{dx}=0 $

$ \Rightarrow e^{x}(1+x)=0\Rightarrow x=-1 $ Now, $ \frac{d^{2}y}{dx^{2}}=e^{x}+e^{x}(1+x)=e^{x}(x+2) $

$ {{( \frac{d^{2}y}{dx^{2}} )}_{(x=-1)}}=\frac{1}{e}+0>0 $

Hence, $ y=xe^{x} $ is minimum function and $ {y_{\min }}=-\frac{1}{e} $ .