Applications Of Derivatives Question 427

Question: The value of a so that the sum of the squares of the roots of the equation $ x^{2}-(a-2)x-a+1=0 $ assume the least value, is

[RPET 2000; AIEEE 2005]

Options:

A) 2

B) 1

C) 3

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ \alpha ,\ \beta $ be the roots of the equation $ x^{2}-(a-2)x-a+1=0, $ then $ \alpha +\beta =a-2,\alpha \beta =-a+1 $

$ \therefore z={{\alpha }^{2}}+{{\beta }^{2}}={{(\alpha +\beta )}^{2}}-2\alpha \beta $

$ ={{(a-2)}^{2}}+2(a-1)=a^{2}-2a+2 $

$ \frac{dz}{da}=2a-2=0\Rightarrow a=1 $

$ \frac{d^{2}z}{da^{2}}=2>0, $ so z has minima at $ a=1 $

So $ {{\alpha }^{2}}+{{\beta }^{2}} $ has least value for $ a=1 $ .

This is because we have only one stationary value at which we have minima.

Hence $ a=1 $ .