Applications Of Derivatives Question 429

Question: The straight line $ \frac{x}{a}+\frac{y}{b}=2 $ touches the curve $ {{( \frac{x}{a} )}^{n}}+{{( \frac{y}{b} )}^{n}}=2 $ at the point (a, b) for

Options:

A) n = 1, 2

B) n = 3, 4, -5

C) n = 1, 2, 3

D) Any value of n

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The point (a, b) lies on both the straight line and the given curve $ {{( \frac{x}{a} )}^{n}}+{{( \frac{y}{b} )}^{n}}=2 $ .

Differentiating the equation, we get $ \frac{dy}{dx}=-\frac{{x^{n-1}}}{a^{n}}.\frac{b^{n}}{{y^{n-1}}} $

$ \therefore {{( \frac{dy}{dx} )}_{at(a,b)}}=-\frac{b}{a}= $ the slope of $ \frac{x}{a}+\frac{y}{b}=2 $

Hence, it touches the curve at (a, b) whatever may be the value of n.