Applications-Of-Derivatives Question 431
Question: What is the area of the largest rectangular field which can be enclosed with 200 m of fencing?
Options:
A) $ 1600,m^{2} $
B) $ 2100,m^{2} $
C) $ 2400,m^{2} $
D) $ 2500,m^{2} $
Show Answer
Answer:
Correct Answer: D
Solution:
[d] Let length and breadth of rectangular field be x and y respectively
$ \therefore 2(x+y)=200\Rightarrow y=100-x $  and area,  $ A=xy $   $ =x(100-x)\because \frac{dA}{dx}=100-2x $  Put  $ \frac{dA}{dx}=0 $  for maxima or minima  $ 100-2x=0 $
$ \Rightarrow x=50\Rightarrow y=50 $  Now,  $ \frac{d^{2}A}{dx^{2}}=-2<0 $ , which shows maximum, independent of values of x and y, but only when they are equal.
$ \therefore  $       A is maximum at  $ x=50 $ . Hence, required area  $ =50(100-50) $   $ =50\times 50=2500,m^{2} $
 BETA
  BETA 
             
             
           
           
           
          