Applications-Of-Derivatives Question 437
Question: The velocity of telegraphic communication is given by $ v=x^{2}\log (1/x) $ , where x is the displacement. For maximum velocity, x equals to?
Options:
A) $ {e^{1/2}} $
B) $ {e^{-1/2}} $
C) $ {{(2e)}^{-1}} $
D) $ 2{e^{-1/2}} $
Show Answer
Answer:
Correct Answer: B
Solution:
[b] Given, velocity is  $ v=x^{2}\log \frac{1}{x}=-x^{2}\log x $  where x is displacement. For maximum velocity,  $ \frac{dv}{dx}=0 $  Now,  $ \frac{dv}{dx}=-x^{2}\frac{1}{x}+\log x(-2x) $   $ =-x-2x\log x $   $ \frac{dv}{dx}=0\Rightarrow -x-2x\log x=0\Rightarrow x=-2x\log x $
$ \Rightarrow \frac{-1}{2}=\log x\Rightarrow x={e^{-\frac{1}{2}}} $  Hence, for maximum velocity  $ x={e^{-1/2}} $
 BETA
  BETA 
             
             
           
           
           
          