Applications-Of-Derivatives Question 438

Question: Find the greatest value of the function $ f(x)=\frac{\sin 2x}{\sin ( x+\frac{\pi }{4} )} $ on the interval $ [ 0,\frac{\pi }{2} ] $

Options:

A) 1

B) 2

C) 3

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let $ f(x)=\frac{\sin 2x}{\sin ( x+\frac{\pi }{4} )}= $ $ \sqrt{2}{ \frac{{{(\sin x+\cos )}^{2}}-1}{\sin x+\cos x} } $ $ =\sqrt{2}( \frac{y^{2}-1}{y} ) $ , where $ y=\sin x+\cos x $ Let $ \phi (y)=\sqrt{2}( \frac{y^{2}-1}{y} ), $ and $ g(x) $ $ =\sin x+\cos x $ We have, $ g’(x)=\cos x-\sin x $ . For max or min. $ g’(x)=0\Rightarrow \tan x=1 $

$ \Rightarrow x=\pi /4 $ . For this value of x. $ g’’(x)<0 $ . Thus, $ g(x) $ is max at $ x=\pi /4 $ and hence the domain of $ g(x) $ is $ [1,\sqrt{2}] $ i.e. y lies between 1 and $ \sqrt{2} $ Now, $ \phi ‘(y)=\sqrt{2}( 1+\frac{1}{y^{2}} )>0 $ for all $ y\in [1,\sqrt{2}] $ . That is $ \phi (y) $ is increasing for all $ y\in [1,\sqrt{2}] $ Thus it attains the greatest value at $ \sqrt{2} $ and is equal to $ \sqrt{2}( \frac{{{(\sqrt{2})}^{2}}-1}{\sqrt{2}} )=1 $ Hence, greatest value of f(x) on $ [0,\pi /2]= $ greatest value of $ \phi (y) $ on $ [1,\sqrt{2}]=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें