Applications Of Derivatives Question 44

Question: The function $ f(x)=\cos x-2px $ is monotonically decreasing for

[RPET 1987; MP PET 2002]

Options:

A) $ p<\frac{1}{2} $

B) $ p>\frac{1}{2} $

C) $ p<2 $

D) $ p>2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x) $ will be monotonically decreasing, if $ f’(x)<0 $ .

therefore $ f’(x)=-\sin x-2p<0 $

therefore $ \frac{1}{2}\sin x+p>0 $

therefore $ p>\frac{1}{2},,[\because -1\le \sin x\le 1] $ .