Applications-Of-Derivatives Question 445
Question: The point of the curve $ y^{2}=2(x-3) $ at which the normal is parallel to the line $ y-2x+1=0 $ is
[MP PET 1998]
Options:
A) (5,2)
B) $ ( -\frac{1}{2},-2 ) $
C) (5, ?2)
D) $ ( \frac{3}{2},,2 ) $
Show Answer
Answer:
Correct Answer: C
Solution:
Given  $ y^{2}=2(x-3) $                          …..(i)            Differentiate w.r.t. x,  $ 2y.\frac{dy}{dx}=2\Rightarrow \frac{dy}{dx}=\frac{1}{y} $             Slope of the normal  $ =\frac{-1}{( \frac{dy}{dx} )}=-y $             Slope of the given line  $ =2 $           
$ \therefore y=-2 $             From equation (i),  $ x=5 $           
$ \therefore  $ Required point is  $ (5,,-2) $ .
 BETA
  BETA 
             
             
           
           
           
          