Applications-Of-Derivatives Question 447

Question: If $ x=t^{2} $ and $ y=2t $ , then equation of the normal at $ t=1 $ is

[RPET 1996]

Options:

A) $ x+y-3=0 $

B) $ x+y-1=0 $

C) $ x+y+1=0 $

D) $ x+y+3=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ x=t^{2} $ and $ y=2t $ At $ t=1,\ x=1 $ and $ y=2 $ Now $ ( \frac{dy}{dx} )=\frac{dy/dt}{dx/dt}=\frac{2}{2t}=\frac{1}{t} $
$ \Rightarrow $ $ {{( \frac{dy}{dx} )}_{t=1}}=1 $
$ \therefore $ Equation of the normal at (1, 2) is $ y-2=-\frac{1}{\frac{dy}{dx}}(x-1) $
Þ $ y-2=-1(x-1) $ Þ $ x+y-3=0 $ .