Applications-Of-Derivatives Question 451

Question: The angle between curves $ y^{2}=4x $ and $ x^{2}+y^{2}=5 $ at (1, 2) is

[Karnataka CET 1999]

Options:

A) $ {{\tan }^{-1}}(3) $

B) $ {{\tan }^{-1}}(2) $

C) $ \frac{\pi }{2} $

D) $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

For curve $ y^{2}=4x $
Þ $ \frac{dy}{dx}=\frac{4}{2y} $ \ $ {{( \frac{dy}{dx} )}{(1,,2)}}=1 $ and for curve $ x^{2}+y^{2}=5 $
Þ $ \frac{dy}{dx}=\frac{-x}{y} $ \ $ {{( \frac{dy}{dx} )}
{(1,,2)}}=\frac{-1}{2} $ \ Angle between the curves is $ \theta ={{\tan }^{-1}}| ,\frac{\frac{-1}{2},-1}{1+( \frac{-1}{2} )}, |={{\tan }^{-1}}(3) $ .