Applications-Of-Derivatives Question 453

Question: The tangent to the curve $ y=ax^{2}+bx $ at $ (2,,-8) $ is parallel to x-axis. Then

[AMU 1999]

Options:

A) $ a=2,,b=-2 $

B) $ a=2,b=-4 $

C) $ a=2b=-8 $

D) $ a=4,,b=-4 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=ax^{2}+bx $ $ \frac{dy}{dx}=2ax+b\Rightarrow {{( \frac{dy}{dx} )}_{(2,,-8)}}=4a+b $ $ \because $ Tangent is parallel to x-axis \ $ \frac{dy}{dx}=0\Rightarrow b=-4a $ ?..(i) Now, point (2, ?8) is on the curve of $ y=ax^{2}+bx $ \ $ -8=4a+2b $ ??(ii) From (i) and (ii), we get $ a=2,b=-8 $ .