Applications-Of-Derivatives Question 457

Question: The length of normal to the curve $ x=a,(\theta +\sin \theta ), $ $ y=a(1-\cos \theta ) $ at the point $ \theta =\pi /2 $ is

[RPET 1999]

Options:

A) $ 2a $

B) $ a/2 $

C) $ \sqrt{2},a $

D) $ a/\sqrt{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Length of normal = $ y\sqrt{1+{{( \frac{dy}{dx} )}^{2}}} $ Now, $ \frac{dy}{dx}=\frac{dy/d\theta }{dx/d\theta }=\frac{a\sin \theta }{a(1+\cos \theta )}=\frac{\sin \theta }{1+\cos \theta }=\frac{2\sin \frac{\theta }{2}\cos \frac{\theta }{2}}{2{{\cos }^{2}}\frac{\theta }{2}} $ \ $ {{( \frac{dy}{dx} )}{( \theta =\frac{\pi }{2} )}}=,{{[ \tan \frac{\theta }{2} ]}{( \theta =\frac{\pi }{2} )}}=1{{[y]}_{( \theta =\frac{\pi }{2} )}}=a,( 1-\cos \frac{\pi }{2} )=a $ \ Length of normal = $ a\sqrt{1+{{(1)}^{2}}}=\sqrt{2}a $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें