Applications-Of-Derivatives Question 458

Question: The normal of the curve $ x=a(\cos \theta +\theta \sin \theta ) $ $ y=a(\sin \theta -\theta \cos \theta ) $ at any $ \theta $ is such that

[DCE 2000; AIEEE 2005]

Options:

A) It makes a constant angle with x-axis

B) It passes through the origin

C) It is at a constant distance from the origin

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=a(\sin \theta -\theta \cos \theta ),,x=a(\cos \theta +\theta \sin \theta ) $ $ \frac{dy}{d\theta }=a[\cos \theta -\cos \theta +\theta \sin \theta ]=a\theta \sin \theta $ $ \frac{dx}{d\theta }=a(-\sin \theta +\sin \theta +\theta \cos \theta )=a\theta \cos \theta $
$ \therefore ,\frac{dy}{dx}=\frac{dy/d\theta }{dx/d\theta }=\frac{a\theta \sin \theta }{a\theta \cos \theta }=\tan \theta $
Þ Slope of the tangent = $ \tan \theta $ \ Slope of the normal = $ -\cot \theta $ Hence, equation of normal $ [y-a\sin \theta +a\theta \cos \theta ]=-\frac{\cos \theta }{\sin \theta } $ $ [x-a\cos \theta -a\theta \sin \theta ] $
Þ $ y\sin \theta -a{{\sin }^{2}}\theta +a\theta \sin \theta \cos \theta $ $ =-x\cos \theta +a{{\cos }^{2}}\theta +a\theta \sin \theta \cos \theta $
Þ $ x\cos \theta +y\sin \theta =a({{\sin }^{2}}\theta +{{\cos }^{2}}\theta ) $
Þ $ x\cos \theta +y\sin \theta =a $ \Distance from origin = $ \frac{a}{\sqrt{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }}=\text{a constant} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें