Applications-Of-Derivatives Question 459

Question: The slope of the tangent to the curve $ x=3t^{2}+1,y=t^{3}-1 $ at $ x=1 $ is

[Karnataka CET 2003]

Options:

A) 0

B) $ \frac{1}{2} $

C) $ \infty $

D) $ -2 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ x=3t^{2}+1,,y=t^{3}-1 $ \ $ \frac{dx}{dt}=6t, $ $ \frac{dy}{dt}=3t^{2} $ Now $ \frac{dy}{dx}=( \frac{\frac{dy}{dt}}{\frac{dx}{dt}} ) $ = $ \frac{3t^{2}}{6t}=\frac{t}{2} $ For $ x=1 $ , $ 3t^{2}+1=1\Rightarrow t=0 $
Þ Slope = $ \frac{0}{2}=0 $ .