Applications-Of-Derivatives Question 460

Question: An equation of the tangent to the curve $ y=x^{4} $ from the point (2, 0) not on the curve is

[RPET 2000]

Options:

A) $ y=0 $

B) $ x=0 $

C) $ x+y=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let the point of contact be $ (h,k) $ , where $ k=h^{4} $ . Tangent is $ y-k=4h^{3}(x-h) $ , $ [ \because ,\frac{dy}{dx}=4x^{3} ] $ It passes through (2, 0), \ $ -k=4h^{3}(2-h) $ $ $
Þ $ h=0 $ or 8/3 , \ $ k=0 $ or (8/3)4 \ Points of contact are (0, 0) and $ ( \frac{8}{3},,{{( \frac{8}{3} )}^{4}} ) $ \ Equation of tangents are $ y=0 $ and $ y-{{( \frac{8}{3} )}^{4}}=4{{( \frac{8}{3} )}^{3}}( x-\frac{8}{3} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें