Applications-Of-Derivatives Question 470

Question: The equation of the tangent to curve $ y=b{e^{-x/a}} $ at the point where it crosses y-axis is

[Karnataka CET 2002]

Options:

A) $ ax+by=1 $

B) $ ax-by=1 $

C) $ \frac{x}{a}-\frac{y}{b}=1 $

D) $ \frac{x}{a}+\frac{y}{b}=1 $

Show Answer

Answer:

Correct Answer: D

Solution:

Curve is $ y=b{e^{-x/a}} $ Since the curve crosses y-axis (i.e., x = 0) \ $ y=b $ Now $ \frac{dy}{dx}=\frac{-b}{a}{e^{-x/a}} $ . At point (0, b), $ {{( \frac{dy}{dx} )}_{(0,,b)}}=\frac{-b}{a} $ \Equation of tangent is, $ y-b=\frac{-b}{a}(x-0) $
$ \Rightarrow $ $ \frac{x}{a}+\frac{y}{b}=1 $ .