Applications-Of-Derivatives Question 470

Question: The equation of the tangent to curve $ y=b{e^{-x/a}} $ at the point where it crosses y-axis is

[Karnataka CET 2002]

Options:

A) $ ax+by=1 $

B) $ ax-by=1 $

C) $ \frac{x}{a}-\frac{y}{b}=1 $

D) $ \frac{x}{a}+\frac{y}{b}=1 $

Show Answer

Answer:

Correct Answer: D

Solution:

Curve is $ y=b{e^{-x/a}} $ Since the curve crosses y-axis (i.e., x = 0) \ $ y=b $ Now $ \frac{dy}{dx}=\frac{-b}{a}{e^{-x/a}} $ . At point (0, b), $ {{( \frac{dy}{dx} )}_{(0,,b)}}=\frac{-b}{a} $ \Equation of tangent is, $ y-b=\frac{-b}{a}(x-0) $
$ \Rightarrow $ $ \frac{x}{a}+\frac{y}{b}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें