Applications-Of-Derivatives Question 477

Question: The normal to the curve $ x=a(1+\cos \theta ),,y=a\sin \theta $ at $ ‘\theta ’ $ always passes through the fixed point

[AIEEE 2004]

Options:

A) (a, a)

B) (0, a)

C) (0, 0)

D) (a, 0)

Show Answer

Answer:

Correct Answer: D

Solution:

Slope of normal $ =\frac{-dx}{dy}=\frac{\frac{-d{ a(1+\cos \theta ) }}{d\theta }}{\frac{d(a\sin \theta )}{d\theta }}=\frac{a\sin \theta }{a\cos \theta }=\tan \theta $ Now, the equation of normal at $ \theta $ is, $ y-a\sin \theta =\tan \theta [x-a(1+\cos \theta )] $ Clearly, this line passes through (a, 0).