Applications Of Derivatives Question 48

Question: At what points of curve $ y=\frac{2}{3}x^{3}+\frac{1}{2}x^{2}, $ the tangent makes equal angle with the axis-

Options:

A) $ ( \frac{1}{2},\frac{5}{24} ) $ and $ ( -1,-\frac{1}{6} ) $

B) $ ( \frac{1}{2},\frac{4}{9} ) $ and $ (-1,0) $

C) $ ( \frac{1}{3},\frac{1}{7} ) $ and $ ( -3,\frac{1}{2} ) $

D) $ ( \frac{1}{3},\frac{4}{47} ) $ and $ ( -1,-\frac{1}{3} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ y=\frac{2}{3}x^{3}+\frac{1}{2}x^{2}\therefore \frac{dy}{dx}=\frac{2}{3}3x^{2}+\frac{1}{2}2x=2x^{2}+x $ Since the tangent makes equal angles with the axes.

$ \therefore \frac{dy}{dx}=\pm 1or2x^{2}+x=\pm 1 $ or

$ 2x^{2}+x-1=0(2x^{2}+x+1=0 $ has no real roots) or $ (2x-1)(x+1)=0 $ i.e., $ x=\frac{1}{2} $ or $ x=-1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें